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An Improved Deep Learning Model for High-Impact
Weather Nowcasting

Shun Yao , Haonan Chen , Senior Member, IEEE, Elizabeth J. Thompson, and Robert Cifelli

Abstract—Accurate nowcasting (short-term prediction, 0–6 h) of
high-impact weather, such as landfalling hurricanes and extreme
convective precipitation, plays a critical role in natural disaster
monitoring and mitigation. A number of nowcasting approaches
have been developed in the past few decades, such as optical flow
and the tracking radar echoes by correlation system. Most of these
mainstream operational techniques are based on radar echo map
extrapolation, which determines the velocity and direction of pre-
cipitation systems using historical and current radar observations.
However, the skill of the traditional extrapolation method decreases
rapidly within the first hour. In order to improve nowcasting skill,
recent studies have proposed using deep learning methods, such
as convolutional recurrent neural network and trajectory gate
recurrent unit. But none of these methods focuses on high-impact
weather events, and the deep learning models trained based on gen-
eral precipitation events cannot meet the demand of accurate warn-
ings and decision-making at the scales required for high-impact
weather events, such as hurricanes. Using multiradar observations,
this article introduces the idea of self-attention and develops a
self-attention-based gate recurrent unit (SaGRU) to enhance its
generalization capability and scalability in predicting high-impact
weather events. In particular, two types of high-impact weather sys-
tems, namely, landfalling hurricanes and extreme convective pre-
cipitation events, are investigated. Three models are trained based
on hurricane events, heavy rainfall (i.e., nonhurricane) events, and
all events combined in the southeast United States during 2015
and 2020. The impacts of different data sources on the nowcasting
performance are quantified. The evaluation results of nowcasting
products show that our SaGRU performs very well in predicting
hurricane-induced rainfall. In the new methodology, the data from
nonhurricane events are shown to provide useful information in
enhancing the nowcasting performance during hurricane events as
the model trained by combining all the hurricane and nonhurricane
events has the best performance. In addition, this article quantifies
the impact of the sequence length of input radar observations on
the nowcasting performance, which shows that five consecutive
observations are sufficient to obtain a stable model, and even two
consecutive observations can produce reasonable results.

Index Terms—Deep learning, high-impact weather, precipita-
tion nowcasting, weather radar.
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I. INTRODUCTION

A S ONE of the most typical high-impact weather phenom-
ena, hurricane refers to tropical cyclones with maximum

sustained surface winds reaching 74 miles/h [1], which often
produces severe/serious hazards, such as storm surge, floods,
strong winds, and hurricane-spawned tornadoes. Unfortunately,
the risk of extensive damage and loss of life caused by hurricanes
is increasing due to the growth of population, changing climate,
and urbanization [2]. For instance, hurricane Harvey during
August 25 and September 4, 2017 impacted 13 million people
with over 100 fatalities. About 135 000 homes were damaged
or destroyed, and the total damage was $125 billion [3]. In less
than a week, the storm poured a year of rainfall over Houston
and most of southeastern Texas. Two flood-control reservoirs
had burst, causing water levels to rise throughout the Houston
area. Therefore, the accurate nowcasting of hurricane intensity
and subsequent rainfall is critical in high-impact weather studies
and operational applications of weather radar and/or satellite
observations.

Conventionally, the operational precipitation nowcasting
strategies based on radar measurements attempt to predict future
radar echo maps through leveraging extrapolation methods,
which can be roughly classified into three categories: centroid
tracking methods, tracking radar echoes by correlation (TREC),
and optical flow [4], [5], [6]. The centroid tracking algorithms
detect isolated storms at the current moment and try to link
each storm across two successive time steps, then forecast
storm progress using the centroid of the identified storm. As
the storm was condensed into a centroid cell, it is easier for
tracking and predicting massive and strong echoes. The other
advantage of the centroid-type method is that it can provide
physical information about each storm, such as storm area,
top, and volume [7]. However, when the echoes are fused or
split, the nowcasting accuracy decreases rapidly. In contrast,
TREC estimates a motion field based on correlation analysis. It
subdivides a radar image into numerous square boxes of equal
size. Each box can be represented as a two-dimensional array
containing reflectivity intensity values. Then the correlations
between corresponding boxes at two consecutive radar images
are calculated. The motion vector is calculated as the space
shift that results in the highest correlation coefficient. Finally,
these motion vectors can be used for nowcasting. The TREC
algorithm involves calculating the spatial optimal correlation
coefficients for two adjacent moments and then establishing
a fitting relationship for all radar echoes. This method can
effectively track stratiform rainfall systems, but the performance
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Fig. 1. General concept of a deep learning precipitation nowcasting system.
The input of the system can be radar reflectivity (Z), differential reflectivity
(Zdr), specific differential phase (Kdp), rain gauge data and/or environmental
factors, such as terrain and NWP model outputs. The output is the prediction of
precipitation.

is much lower in predicting strong convective processes with
fast-evolving echoes. Similarly, the optical flow approaches
estimate a motion field (optical flow), but in a different way.
Based on the principle of image pixel intensity conservation,
the optical flow method assumes that the reflectivity intensity
remains unchanged in the two adjacent frames. Essentially, it
calculates the motion information of the reflectivity between
adjacent frames by using the pixel change in the image sequence
and the correlation between adjacent frames to discover the
relationship of the previous frame and the current frame. Then,
future echo maps can be extrapolated using semi-Lagrangian
advection after the optical flow has been achieved. A major
disadvantage of optical flow is that it cannot predict the initiation,
growth, and decay of the storms.

For high-impact weather events, such as severe convective
rain and hurricanes, it is difficult to use these conventional
approaches to produce reliable nowcasting products since the
inherent complexity of the changing atmospheric state and non-
linear cloud dynamics is high during such events and the as-
sumption of stationarity between frames in the abovementioned
methods is not valid [8], [9]. With the great success of deep
learning techniques in a variety of fields, including geosciences
and remote sensing research (e.g., [10], [11], [12], [13], [14],
[15]), recent studies have proposed using this machine learn-
ing approach to tackle the precipitation nowcasting problem
since the nonlinearity of machine learning can better model
the spatiotemporal variability of precipitation [16], [17], [18],
[19], [20]. As shown in Fig. 1, deep learning precipitation now-
casting can be performed based on polarimetric weather radar
measurements, i.e., radar reflectivity (Z), differential reflectivity
(Zdr), and specific differential phase (Kdp). In situ measure-
ments, as well as environmental factors, such as terrain feature,

temperature, and numerical weather prediction (NWP) model
outputs, can also be incorporated into the deep learning-based
nowcasting frameworks.

To date, most of the deep learning nowcasting models rely
on recurrent neural networks (RNN) since the radar echo ex-
trapolation can be viewed as a sequence-to-sequence problem.
A typical example is the convolutional long short-term memory
(ConvLSTM) model developed by Shi et al. [17], which modeled
precipitation nowcasting as a spatiotemporal serial prediction
issue that can be solved with the sequence-to-sequence learning
framework. However, training a practical model is difficult
because of a large number of parameters in ConvLSTM. A
more simplified convolutional gated recurrent unit (ConvGRU)
model has been proposed for echo map extrapolation [21], which
utilizes convolution kernels to deal with local neighborhood sets
and reduce the number of parameters. Shi et al. [18] improved
the nowcasting model using trajectory gated recurrent unit
(TrajGRU), which carries out trajectory convolution between
different time steps to capture the structure of spatiotemporal
variations for recurrent connections. However, these features
are estimated with the local receptive field and only provide
sparse spatial dependencies thus can not obtain long-range de-
pendencies efficiently. Compared to the trajectory convolution,
the self-attention module is capable of capturing the global
spatial variations with a single layer [22]. Besides, the features
at the current time step can benefit from aggregating relevant
features in the past. Lin et al. [23] introduced the self-attention
memory (SAM) module into the ConvLSTM. However, their
SAM and the inherent part of ConvLSTM have very high com-
putational complexity in high-resolution input, which cannot
meet the demand of nowcasting high-impact weather based
on high-resolution radar data. As such, we develop the self-
attention-based GRU as a backbone of the deep learning model
designed in this study.

Since the nowcasting model extracts features from the training
dataset and then performs prediction using the learned features,
data distribution, diversity, and quality are critical for deep
learning. In fact, data are often considered the most important
part of modern machine learning techniques. Unfortunately, few
of the previous studies focused on quantifying the nowcasting
performance for the model trained with diverse features during
different types of precipitation events. In addition, the studies
on extreme weather events, such as hurricanes are still rare,
although some of the previous studies paid special attention to
convective precipitation events [7], [17], [18], [24], [20]. As
a result, the existing models do not have sufficient capacity
for hurricane nowcasting due to the fast evolving of associated
precipitation. The radar reflectivity of hurricanes is continually
changing, and there are significant radial and azimuthal flow
components in tropical cyclones, which impact the convective
structure, suggesting that the nowcasting model must learn the
features including both the movement, structure, and strength
varieties of tropical cyclones at the same time.

In addition, hurricanes are less common compared to heavy
rainfall events, indicating that there may not be sufficient data
to train a mature hurricane nowcasting model solely based
on hurricane observations. Since the high-impact convective
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Fig. 2. Selected study domain during hurricane Harvey event at 00:24 UTC,
26 August 2017. The color bar stands for radar composite reflectivity.

precipitation events are also of our interest, and this type of
event is relatively common, this study will quantify the impact
of applying the model trained based on one set of intense rainfall
events to a different type of high-impact weather events. In
particular, we will investigate how to adjust the deep learning
model for adaptive applications based on radar observations
not only for hurricanes but also for (nonhurricane) extreme
convective precipitation.

The main contributions of this article include the following.
1) We develop a self-attention-based gate recurrent unit

(SaGRU) model for nowcasting high-impact weather
events.

2) Radar data collected from heavy convective rainfall events
in South Texas from 2015 to 2020, and 22 hurricane events
over the United States during the same period are selected
to train the deep learning models to quantify the impact of
data sources on nowcasting performance.

3) We quantify the impact of the sequence length of input
radar observations on the model performance, which can
serve as a guideline for precipitation nowcasting research.

The rest of this article is organized as follows. Section II de-
scribes the study domain, dataset, and nowcasting methodology
used in this article. Section III details the application products
during high-impact weather events and quantifies the nowcasting
performance of the adapted deep learning model. In Section IV, a
thorough discussion of the nowcasting performance is provided.
Finally, Section V concludes this article.

II. STUDY DOMAIN, DATASETS, AND METHODOLOGY

A. Study Domain

South Texas is selected for our study domain, which covers
an area of about 600 × 600 km ranging from 26.5◦N–32.5◦N
latitude to 93.5◦W–99.5◦W longitude. This area includes Greater
Houston region, one of the most populous metropolitan regions
in the United States. Fig. 2 shows the specific study domain
along with an example of the radar reflectivity map collected
during hurricane Harvey at 00:24 UTC, 26 August 2017.

This region is within the humid subtropical climate zone, a
typical climatology in Southern United States. During most of
the year, prevailing winds are from the south and southeast,
bringing heat and moisture [25]. The majority of South Texas
areas receive ample rainfall in general, more than 60 inches
(1500 mm) annually [26]. In addition, spring supercell thunder-
storms sometimes bring tornadoes to the region, even though
it is not in the Tornado Alley like much of Northern Texas.
As a result, South Texas experiences a wide range of natural
weather hazards, including urban fash flooding, high winds,
tornadoes, and hailstorms. Furthermore, due to the flat terrain
and low-permeability clay-silt prairie soils, flooding can easily
be exacerbated, and there have been more flood-related deaths
and property damage in this study domain than that in any
other regions in the United States [27]. Accurate monitoring and
prediction of the rapidly changing meteorological conditions
in such a region is necessary for emergency management and
decision-making. Therefore, it is an ideal location to study high-
impact weather events and produce precipitation nowcasting.

B. Dataset

As mentioned, this study uses the radar reflectivity mosaic
data for deep learning-based precipitation nowcasting. Com-
posite radar reflectivity images are produced at 6-min resolution
using the National Weather Service (NWS) Weather Surveil-
lance Radar—1988 Doppler (WSR-88D) systems in this region.
Spatially, the reflectivity images are created at regular 1-km
resolution grids, which means the number of pixels for the single
image is 600× 600. The three-dimensional data indicate precip-
itation patterns and their movement, and it is ideal for sequence
modeling. In particular, we utilize the radar data collected during
heavy precipitation events over this study domain from 2015 to
2020. The training and validation datasets are randomly selected
from 2015 to 2020 (except 2017): 1348 days of data are used
for training the deep learning model, 104 days are used as
validation data to optimize the model parameters, and 290 days
of precipitation data during 2017 are used for the independent
test.

In addition, 22 hurricane events are used, which made landfall
during 2015 and 2020. Here, it should be noted that the hurricane
events are not limited to the region of South Texas, i.e., all the
major hurricane events over the United States during 2015 and
2020 are included. Similar to the heavy precipitation events, 21
hurricane events are used for training and validation whereas
hurricane Harvey is selected for independent test. In summary,
we trained three models based on heavy precipitation events,
hurricane events, and all events combined, respectively, to quan-
tify the impact of data sources on the nowcasting performance.

C. Methodology

In this section, the deep learning model utilized in this study
is detailed, including data preprocessing, model structure, the
essential components in model training and testing, as well as
the nowcasting performance evaluation metrics.

1) Data Preprocessing: First, since most of the days are
characterized by clear air (i.e., no rain), the learned features
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Fig. 3. Overall framework of the applied high-impact weather nowcasting system. Essentially, the system is trained to predict future radar reflectivity echo maps
based on few previous observations. M is the number of previous observations and N represents the length of the predictions of future images.

will be dominated by these nonrain days if the model is trained
based on all the data. To this end, only the days with rainfall
occurring during 2015 and 2020 are selected and used, as sug-
gested by [18] and NWS forecasters (personal communications).
In addition, the filter process has taken into account the radar
image sequences rather than a single image, since we need
to ensure each data sequence contains adequate data samples
with strong reflectivity for training a reliable sequence model.
Since we also investigate the impact of the input sequence
length on the nowcasting performance, the number of frames
ranges from 32 to 40. Hence, the whole dataset is split into
numerous sequences by a moving sequence sliding window from
the start time (starting point of past observations) to the end
time (nowcasting lead time). The number of grid points that
have reflectivity higher than 35 dBZ is summed up for each
sequence, and then divided by the sequence length to get the
average number of qualified grid points for this sequence. If
the average number is larger than 50, this sequence of radar
reflectivity data will be selected for machine learning. After
filtering all the sequences, the training dataset contains 463 602
sequences, and 31 883 sequences are used as the validation set
to optimize the model parameters. In the testing stage, 87 571
sequences are used to evaluate the capacity of the trained models.
Furthermore, the 87 571 testing samples are split into heavy
precipitation events and hurricane events since a major goal
is to quantify the nowcasting performance of the trained mod-
els during different precipitation events. All radar reflectivity

data are transformed to [0,1] gray-level pixels by min–max
normalization.

2) Deep Learning Model Architecture: The work flow of the
proposed deep learning model for high-impact weather now-
casting is shown in Fig. 3. As mentioned, the radar reflectivity
images are first transformed to grayscale images, as described
in Section II-C1, before being fed into the nowcasting model.
The precipitation nowcasting system utilizes previous M steps
of radar observations to predict the future N steps (at 6 min
intervals). For one iteration, we have a sequence of consecutive
real observations as ground truths GT(1, 2, ... M, M+1, . . .
M+N). Then this sequence is split into two parts in the training
stage. The previous GT(1, 2. . . M) observations are fed into the
nowcasting model to get the predictions P(M+1, . . . M+N) of
future observations. In the training stage, the predictions P(M+1,
. . .M+N) are compared with ground truth GT(M+1, . . .M+N) to
adjust the weights in the nowcasting model for the next iteration.
It should be emphasized that various values of M have been
tested to quantify the required number of past radar observations
for training and applying the nowcasting model. There is a
tradeoff issue here since a larger number of steps M requires
more parameters and time to train the model, although we would
expect more precipitation information content from a longer
observation sequence. On the other hand, a shorter sequence
(i.e., smaller M) may contain less features of precipitation, but it
is easier to train. Results from multiple experiments for different
M are described in Section IV-B. N is an adjustable variable up
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Fig. 4. Structure of encoder–decoder module, illustrated in Fig. 3.

to 30. That is, the deep learning model can produce nowcasting
results for a lead time up to 3 h. For the results in Section III,
M = 5 and N = 30 are primarily used to quantify the nowcasting
performance, i.e., previous 30-min radar observations are used
to predict observations of future 3 h.

Fig. 4 shows the overall structure of the expanded encoder–
decoder structure, which includes four main parts: the RNN, up-
sample, down-sample, and convolution. Multiple layers of RNN
were stacked to build an encoder–decoder structure, resulting in
an end-to-end trainable model. The encoder part extracts hidden
states from previous radar echo map observations, while the de-
coder part uses the hidden states to forecast future echo maps. In
particular, the hidden state of the RNN serves as input to the next
level to extract the spatiotemporal information of different levels.
Down-sample and up-sample are implemented by convolution
and deconvolution, respectively. The updating of the low-level
states could be guided by the high-level states, which have
captured the global spatiotemporal correlations. Furthermore,
low-level states could have an impact on the nowcasting. The
initial hidden state of encoder and the initial input of forecaster
are 0 and the final output is regressed through a convolution
layer.

The choice of the RNN unit is flexible. Originally, we used
TrajGRU [18] as the baseline for nowcasting. Contrary to the
abovementioned ConvLSTM and ConvGRU with fixed local
neighborhood sets in the convolutional kernels, TrajGRU can
dynamically determine the location-dependent spatiotemporal
patterns. With the adaptive neighborhood in kernels, TrajGRU
generates a flow field from the current input Xt and previous
hidden states Ht−1, and then warps Ht−1 through bilinear
sampling. The output of the TrajGRU base unit Ht is given as
follows:

ut,vt = γ (Xt,Ht−1) (1a)

Zt=σ

(
W xz∗Xt+

L∑
l=1

W l
hz∗warp(Ht−1,ut,l,vt,l)

)
(1b)

Rt=σ

(
W xr∗Xt+

L∑
l=1

W l
hr∗warp(Ht−1,ut,l,vt,l)

)
(1c)

Fig. 5. Basic unit of RNN (SaGRU). Current Input Xt and previous hidden
states Ht−1 are served as input, reset gate Rt and update gate Zt are used to
control the current hidden state Ht.

H ′
t=f

(
W xh∗Xt+Rt◦

(
L∑

l=1

W l
hh∗warp(Ht−1,ut,l,vt,l)

))
(1d)

Ht=(1−Zt)◦H ′
t +Zt◦Ht−1 (1e)

where ut, vt are the flow fields that store the local connection
structure. γ is a one-hidden-layer convolutional neural network.
L is the total number of allowed links. W denotes the weights of
the convolutional kernel, ∗ is the convolution operation and ◦ is
the Hadamard product. The warp function selects the positions
pointed out by ut,l, vt,l from Ht−1 and responsible to dynami-
cally determine the recurrent connections. σ is sigmoid function
and f is Leaky ReLU function.

However, even the experimental results in [18] reveal that Tra-
jGRU captures spatiotemporal correlations better than conven-
tional extrapolation algorithms and some other deep learning-
based algorithms, it still have the deficiency that cannot capture
effective long-range dependencies. The success of self-attention
on computer vision tasks [28], [29], [30] demonstrates its effi-
ciency in aggregating major features across all spatial locations.
It can identify long-range spatiotemporal correlations by calcu-
lating the pairwise relationships between various feature map
positions using a binary relation function. Following that, these
relations can be used to determine the attended features. As such,
an SaGRU is developed to capture the global spatiotemporal
features of the high-impact weather in this article. The SaGRU
model is constructed by cascading self-attention module and
the standard ConvGRU. Contrary to TrajGRU, SaGRU uses
self-attention module to aggregate features from the current
input Xt and previous hidden states Ht−1. Then, the output of
the SaGRU Ht is obtained by the update gate Zt, the reset gate
Rt, and the aggregated features Ĥt−1, as shown in Fig. 5. The
model is formulated as follows:

X̂t = SA (Xt) , Ĥt−1 = SA (Ht−1) (2a)

Zt = σ
(
W xz ∗ X̂t +W hz ∗ Ĥt−1 + bz

)
(2b)

Rt = σ
(
W xr ∗ X̂t +W hr ∗ Ĥt−1 + br

)
(2c)
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Fig. 6. Proposed self-attention module for SaGRU. Ht is the image features
from the hidden layer at the time step t. fh, gh, and vh are the three different
feature spaces based on the 1 × 1 convolution on the Ht. Ĥt is the output.

H ′
t = tanh

(
W xh ∗ X̂t +Rt ◦

(
W hh ∗ Ĥt−1 + bh

))
(2d)

Ht = (1−Zt) ◦H ′
t +Zt ◦ Ĥt−1 (2e)

where SA represents the self-attention module. X̂t and Ĥt−1 are
the features aggregated fromXt andHt−1 through self-attention
modules. In particular, the location at attention module aggre-
gates the input feature by calculating a weighted sum across
all locations at each time step. This allows the long-range spa-
tiotemporal dependencies can be captured during propagation
cross our encoder–decoder structure.

Fig. 6 shows the details of the self-attention module. The im-
age features Ht ∈ RC×N from previous layers are transformed
into three feature spaces f , g, v to calculate the dependencies
across different image regions, where fh = WfHt ∈ RĈ×N ,

gh = WgHt ∈ RĈ×N , vh = WvHt ∈ RĈ×N . Here, C and Ĉ

are the number of channels and we choose Ĉ = C/8 for memory
efficiency.N is the number of feature locations from the previous
hidden layer.Wf ,Wg , andWv are the learnable weight matrices,
which are implemented as 1 × 1 convolutions. We transpose
fh and perform matrix multiplication to calculate the similarity
scores between the ith point and the jth point as follows:

si,j = f (hi)
T g (hj) . (3)

After the softmax operation, the similarity scores are normal-
ized as follows:

βi,j =
exp (si,j)∑N
i=1 exp (si,j)

, i, j ∈ {1, 2, . . . , N}. (4)

The attention of the input features is calculated with a
weighted sum at all locations and the output of the attention
layer is att = {attj ∈ RĈ}, j ∈ {1, 2, . . . , N}, where

attj =
N∑
i=1

βi,jv (hi) . (5)

Then, the output of the attention layer will be added back to
the input feature map. Therefore, the final output is given by

Ĥt = Whatt +Ht. (6)

3) Hyperparameters and Loss Function: In this study, we
use a three-layer encoder–decoder architecture with the number
of filters for the RNNs set to 64, 128, and 128, respectively.
For the first RNN layer, the Xt is 120 × 120 vector since the
kernel size is 7 × 7, padding is 1 and strides are 5 for the first
convolution layer. The first down-sampling is implemented by
the convolutional layer with 5 × 5 kernel size, padding 1, strides
3, and the kernel size is 3 × 3, padding is 1 and strides are 2 for
the second down-sampling. Thus, the Xt for second RNN and
third RNN layer is 40 × 40 and 20 × 20. Similarly, the first and
second up-sampling is implemented by deconvolution with 5 ×
5 kernel size, padding 1, strides 3, and 4× 4 kernel size, padding
1, strides 2. For the self-attention module in SaGRU, the kernal
size of convolutions is 1 × 1 as mentioned in Section II-C2. All
the models are optimized by the Adam optimizer with learning
rate of 10−4 and momentum of 0.5 [31]. The learning rate of
each parameter group decays by gamma 0.5 once the number of
epochs reaches the milestones of 10 000, 30 000, 90 000. The
training batch size is set as 3 and the maximum iteration is set
to 300 000. All experiments are implemented using the PyTorch
platform [32].

It should be pointed out that since the frequencies of differ-
ent rainfall intensities are highly imbalanced, especially during
high-impact weather events, such as hurricanes, this research uti-
lizes two weighted loss functions termed balanced mean squared
error (B-MSE) and balanced mean absolute error (B-MAE),
defined as follows:

w(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 ≤ x < 10
1 10 ≤ x < 20
5 20 ≤ x < 30
10 30 ≤ x < 35
30 35 ≤ x < 40
30 40 ≤ x < 50
35 x > 50

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(7a)

B-MSE =
1

N

N∑
n=1

i=600∑
i=1

j=600∑
j=1

wn,i,j (xn,i,j − x̂n,i,j)
2 (7b)

B-MAE =
1

N

N∑
n=1

i=600∑
i=1

j=600∑
j=1

wn,i,j |xn,i,j − x̂n,i,j | (7c)

where x and x̂ represent the real and predicted reflectivity,
respectively; N is the sample number; wn,i,j is the weight
corresponding to the (i, j)th reflectivity value in the nth training
data.

4) Model Evaluation: To evaluate the performance of pre-
cipitation nowcasting products, this article adopts four widely
used metrics, namely, Heidke skill score (HSS), critical success
index (CSI), probability of detection (POD), and false alarm rate
(FAR). The values of POD, FAR, HSS, and CSI are all between
0 and 1. Higher POD, HSS, CSI, or lower FAR indicate better
nowcasting performance. Since HSS and CSI are more inte-
grated metrics, they are direct indicators of the model capacity.
In addition, for better interpretation of the nowcasting perfor-
mance at different rainfall intensities, the evaluation metrics are
computed using a number of reflectivity thresholds, including
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Fig. 7. Example of 30-min (valid at 09:06 UTC) and 60-min (valid at 09:36 UTC) nowcasting results issued at 08:36 UTC on 08 August 2017: (a), (e) Radar
observation (ground truth). (b), (f) Hurricane model. (c), (g) Nonhurricane model. (d), (h) Combined model.

20, 30, 40 dBZ. For each threshold, we compare the nowcasting
product with the corresponding ground truth by transforming
both reflectivity fields into binary matrices. In particular, if the
reflectivity at a grid pixel is higher than the threshold, “1” is
assigned to this grid pixel, otherwise a “0” will be assigned.
Then the evaluation matrices are derived based on the two binary
matrices

HSS =
2(TP×TN−FN×FP)

(TP+FN)(FN+TN)+(TP+FP)(FP+TN)
(8a)

CSI =
TP

TP + FN + FP
(8b)

POD =
TP

TP + FN
(8c)

FAR =
FP

TP + FP
(8d)

where true positive (TP) is the number of grid points which are
assigned “1” for both nowcasting product and corresponding
ground truth; false negative (FN) is the number of grid points
which are assigned “0” for the nowcasting product, but “1” for
the ground truth; true negative (TN) is the number of grid points
which are assigned “0” for both nowcasting product and cor-
responding ground truth; and false positive (FP) represents the
number of grid points, which are assigned “1” for the nowcasting
product, but “0” for the ground truth.

III. EXPERIMENTAL RESULTS

As mentioned, heavy rainfall events occurred in South Texas
and 22 hurricane events that made landfall in the U.S. during

2015–2020 are used in this study. In particular, the heavy rainfall
events and hurricane Harvey in 2017 are selected for testing,
while other data are utilized for model training. To quantify
the influence of different training data sources on high-impact
weather nowcasting performance, three models are trained based
on hurricane events, (nonhurricane) heavy rainfall events, and
all events combined, respectively.

In addition, extensive experiments are performed using dif-
ferent sequence lengths of input radar observations in the now-
casting models, ranging from 2 to 10 time frames. This is to
quantify the impact of input sequence length on the nowcasting
performance, so as to provide guidelines on how many radar
observations would be required to train a deep learning model
for high-impact weather nowcasting. In this section, example
nowcasting products based on five historical radar observation
frames are illustrated to demonstrate the nowcasting perfor-
mance.

Fig. 7 shows the practical examples of 30-min (valid at
09:06 UTC) and 60-min (valid at 09:36 UTC) precipitation
nowcasting results during a severe convective rainfall event in
the study domain issued at 08:36 UTC, August 08, 2017. In
Fig. 7, both the nowcasting results from three different models
and the corresponding observations are illustrated. Overall, all
the three models can predict the overall pattern and distributions
of rainfall. However, scrutinizing the detailed structure of the
nowcasting results, it is found that the model trained purely based
on hurricane data significantly underestimates the precipitation
intensity during this severe convective event. For the area where
the reflectivity values are larger than 45 dBZ, the patterns are
inconstant with the real observation. In addition, some small
rainfall regions are missed by this model [see Fig. 7(b) and (f)].
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Fig. 8. Example of 30-min (valid at 00:54 UTC) and 60-min (valid at 01:24 UTC) nowcasting results issued at 00:24 UTC on 26 August 2017: (a), (e) Radar
observation (ground truth). (b), (f) Hurricane model. (c), (g) Nonhurricane model. (d), (h) Combined model.

This is likely due to the insufficiency of hurricane data (only
21 events) in capturing heavy rain features in this particular
domain. In addition to the limited amount of data for model
training, location representation could be an issue that limits
the nowcasting performance as most of the hurricane events
were spanning a much larger domain beyond the State of Texas.
In contrast, the model trained based on nonhurricane events
predicts the precipitation distribution more precise than the
hurricane model, especially at lead times of 60 min. However,
compared to the model trained based on combined events, it
still has a deficiency of underestimation when reflectivity values
are larger than 50 dBZ [see Fig. 7(g) and (h)]. In general, the
combined model can not only capture the precipitation patterns,
but also predict the precipitation intensity well.

Fig. 8 illustrates the nowcasting products at lead times of
30 min (valid at 00:54 UTC) and 60 min (valid at 01:24
UTC) during hurricane Harvey issued at 00:24 UTC, Au-
gust 26, 2017. It is found that all the three models can
capture the structure of the tropical cyclone and predict the
overall distribution of precipitation intensity at lead times of
30 min. Being trained on the hurricane events, the hurricane
model can provide more plausible details in terms of the cy-
clone structure, especially near the eye wall relative to the
other nowcasting models. However, it tends to underestimate the
precipitation intensity, produce wrong pattern in the outer spiral
rainband and still miss some small rainfall regions around the
tropical cyclone. Surprisingly, although the models trained using
nonhurricane data and combined data tend to provide a smoother
structure of the cyclone, both can predict higher rainfall intensity
near the outer rainband, which is more consistent with real
observations in Fig. 8(a) and (e).

The quantitative evaluation results of the 60-min nowcasting
products using the three models based on all the test data during
heavy rain events are summarized in Fig. 9, where the best now-
casting skill scores are indicated in bold. In order to highlight the
nowcasting performance for different rainfall intensities, three
thresholds, namely, 20, 30, and 40 dBZ, are applied in calculating
the skill scores. Fig. 9 indicates that during (nonhurricane) heavy
rain events, the model trained using hurricane data has a rather
poor performance, especially for nowcasting convective cores,
which have reflectivity higher than 40 dBZ. This is consistent
with the examples shown in Figs. 7 and 8. The models devel-
oped using nonhurricane data or combined data have similar
performance in terms of all skill scores, and both are better than
the model trained using only hurricane data. In particular, the
model trained using combined data has slightly better skill scores
compared to the model trained using nonhurricane data. This is
encouraging since including the features learned from hurricane
data did not bring any negative impact on the performance of
the combined model. In addition, when the reflectivity threshold
increases from 20 to 40 dBZ, the performance of all models drops
slightly. As expected, predicting heavy rain storm cores is more
challenging than predicting weaker rain regions.

Similarly, Fig. 10 presents the nowcasting skill scores during
the test hurricane event. It can be seen that the model trained us-
ing hurricane data delivers competitive results in terms of FAR,
CSI, and HSS. Compared to model based on hurricane data, the
model trained using nonhurricane data and combined data has
slightly worse FAR, especially when the reflectivity threshold is
low. Considering that FAR is an indicator of underestimating the
rainy areas, the model based on hurricane data delivers a better
precipitation pattern, although the intensity is underpredicted
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Fig. 9. Skill scores of the three models during heavy precipitation events at 60-min lead time. The best results are marked with bold face. (a) POD. (b) FAR.
(c) CSI. (d) HSS.

(see Fig. 8). The model based on nonhurricane events has slightly
better POD, CSI, and HSS scores, and the skill gaps between
these two models are even larger when the reflectivity threshold
is higher. The model trained using combined data renders the
best performance among the three models. These results indicate
that precipitation features learned from heavy convective precip-
itation events can be used to enhance hurricane nowcasting. On
the other hand, including features learned from hurricane events
has no negative impact on nowcasting (nonhurricane) heavy rain
events.

For completeness, Fig. 11 shows the CSI scores as a function
of lead time up to three hours for the nowcasting model trained
using combined data when applied to the test heavy rain and
hurricane events. As expected, the performance will decrease for
both heavy rain and hurricane events as the nowcasting lead time
increases. For heavy rain events, the differences of CSI scores
are quite small when different reflectivity thresholds are used,
demonstrating that the performance of the nowcasting model
is stable for different rainfall intensities. For hurricane events,
the CSI score is relatively low when a reflectivity threshold of
40 dBZ is used, indicating the challenge of predicting heavy

rain bands during hurricane events. Nevertheless, when a lower
reflectivity threshold is used, the CSI scores are much higher.
In addition, the CSI scores during hurricane events are higher
than those during heavy rain events. Even for the lead time of
180 min, the CSI score is about 0.4, which is among the best
results available in the literature (e.g., [6], [7], [20]).

IV. DISCUSSION

A. Impact of Diverse Training Data on the Nowcasting
Performance

Although the products and quantitative evaluation results
demonstrated the effectiveness and superiority of deep learning
in high-impact weather nowcasting, especially its capability of
capturing the spatiotemporal evolution of severe precipitation
systems, it should be noted that generalization capability of the
nowcasting model still requires further investigation. It is well
known that the performance of deep learning models is highly
dependent on the quality and distribution of the training dataset.
In the training stage, if some data samples are significantly
different from the overall distribution of the training data, the
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Fig. 10. Skill scores of the three models during hurricane events at 60-min lead time. The best results are marked with bold face. (a) POD. (b) FAR. (c) CSI.
(d) HSS.

trained model will learn the features from these “outliers” (e.g.,
extreme events) resulting from natural variability and exhibit a
worse performance than the one trained based on the dataset
without these extreme events.

Through this article, we aim to provide a reference about
how to select training data for short-term prediction of heavy
rain, with an emphasis on hurricane events. It is encourag-
ing that the model trained by combining hurricane and (non-
hurricane) heavy rain events has better performance than the
model trained solely based on hurricane data or heavy rain
events. This is noteworthy since the hurricane events are rare
compared to heavy rainfall events. There may not be suffi-
cient data for training a mature hurricane nowcasting model
only based on hurricane observations. This is demonstrated
by the surprising results that the model trained using 21 hur-
ricane events is not significantly better (in fact some of the
scores are even slightly worse) than the one trained only us-
ing heavy convective precipitation events during hurricane ap-
plications. In other words, the rainfall features learned from
heavy rain events can largely represent the characteristics of

rainfall associated with hurricanes, which is critical for hurricane
nowcasting.

In addition, our experimental results show that the model
based on combined data provides slightly better results than the
model trained without including hurricane data during nonhurri-
cane events. This is different from our assumption that involving
hurricane events in the training stage may compromise the model
capacity for applications during nonhurricane events. In fact, the
features learned from hurricane events could even enhance the
overall nowcasting model performance. Combining data from
diverse precipitation events in training the deep learning model
is strongly suggested, especially when there is a lack of sufficient
data for model training.

Despite the positive performance results, a few relevant issues
should be considered in the general application of the developed
deep learning model. First, all the three models tend to smooth
and fuse the structure of tropical cyclones and underestimate
the tail of heavy rainfall regions, especially at longer nowcasting
lead time. This is mainly because the implementation of convolu-
tional and pooling processes, which involves computation based
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Fig. 11. CSI values of combined model with lead time up to 180 min during two high-impact weather events. (a) Heavy rain events. (b) Hurricane events.

on adjacent observations. In addition, the model always under-
estimates heavy rainfall regions as the lead time increases even
after we incorporate the sequences containing strong precipi-
tation echoes and adjust the weights for different precipitation
intensity. A possible solution is to further increase the weights for
reflectivity values larger than 35 dBZ. Further, more hurricane
events should also be utilized for training, including those in
other regions, in order to train a mature deep learning model
that is more broadly applicable [19]. Another issue is about
the model extension, i.e., the inclusion of additional factors in
the nowcasting model. For example, including dual-polarization
radar observables, such as Zdr and Kdp can potentially improve
the nowcasting performance as more precipitation microphysi-
cal information can be gleaned from polarimetric radar data [20].

B. Impact of Radar Observation Sequence Length on the
Nowcasting Performance

As mentioned in Section II-C2, it can take a long time to
train a reliable nowcasting model using long sequences (i.e.,
large number of M in Figs. 3 and 4) of past radar observations
due to the high computational cost, especially when the training

dataset is large. It is critical to quantify the number of past radar
observations required to train the forecast model for high-impact
weather applications. To provide a guideline on how many past
observation frames we should use, we have trained nine models
with different number of M, ranging from 2 to 10. Note that all the
nine models are trained using combined data including hurricane
and nonhurricane heavy rain events. For illustration purposes,
Fig. 12 shows the skill scores of 60-min nowcasting products
from the nine models when applied during hurricane events.
Again, different reflectivity thresholds are used when computing
the scores in order to further evaluate the model performance for
predicting rainfall with different intensities. With a reflectivity
threshold of 20 dBZ, it can be seen that smaller M has relatively
high POD but also higher FAR, indicating that the models trained
based on fewer past radar observations generate too many precip-
itation pixels (i.e., rain area is over predicted). The two integrated
metrics, CSI and HSS, both show an increasing trend as the
number of past radar observations increases, suggesting that
larger M will produce better performance. When a reflectivity
threshold of 30 dBZ is used, the POD scores exhibit a relatively
flat line with some variability for M ≥ 5, indicating that the
POD is relatively insensitive to M at the 30 dBZ threshold.
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Fig. 12. Skill scores for different lengths of past radar observation sequence used for nowcasting during hurricane events. The nowcasting lead time in this
example is 60-min. (a) POD. (b) FAR. (c) CSI. (d) HSS.

Similarly, FAR, HSS, and CSI are relatively stable for M ≥ 5
while they present a growing trend when M ≤ 5. This trend is
much clearer if a reflectivity threshold of 40 dBZ is used. With
a 40 dBZ threshold, it is also apparent that when M > 8 the
model performance can get slightly worse, especially in terms
of the FAR and CSI scores.

Based on these experimental results, we conclude that the
nowcasting model can learn more features when more past
radar observations are considered. The improvement is more
significant for nowcasting weak-moderate rain with relatively
low reflectivity. However, this does not mean that the longer
sequence we use, the better performance we would get, espe-
cially for heavy rain nowcasting as the models trained based
on more past observations are not stable. This is mainly because
the life cycle of severe convective storm cells is short, and heavy
rain regions can be initiated or disappear in a short amount of
time due to the complex atmospheric state and the complex
nonlinear cloud dynamics that occur in these events. More past
radar observations contain too much of these changes, which
cannot be effectively learned by the nowcasting model, not to
mention that it will need more parameters and time to train. It is
also encouraging that even two consecutive radar observations
can yield an acceptable result, indicating that our deep learning
model can learn the features of the motion field efficiently. This
finding demonstrates that the deep learning model helps solve the
issue of fast-changing conditions in extreme weather. In short,
the sensitivity analysis suggests that five past radar observations

are the optimal choice for training a reliable deep learning
model for high-impact weather nowcasting. Although the model
trained based on five past observations may not provide the best
performance all the time, the model is easy to train and very
stable in generating reliable nowcasting results. It should be
pointed out that the experiment can be extended by incorporating
other precipitation systems from different climate regimes to
provide more generalized guidelines, which will be included in
future work.

V. SUMMARY

Accurate nowcasting of high-impact weather, such as hurri-
canes and other heavy rain events, can support severe weather
warnings and emergency management decision-making. Al-
though some previous studies focused on convective precip-
itation nowcasting, there are very few studies that focus on
high-impact weather events, such as hurricanes. This article
has developed a deep learning-based nowcasting system and
introduced the self-attention module to the GRU for extreme
weather events. Five years of radar observations (2015–2020)
over South Texas and 22 hurricane events that made landfall in
the United States during 2015–2020 are used for training, valida-
tion, and testing of the deep learning models. In particular, three
models trained based on hurricane events, (nonhurricane) heavy
rain events, and all events combined are utilized to quantify the
impact of diverse training data on the nowcasting system. In



7412 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

addition, a number of experiments are conducted to investigate
the required number of past radar observations for training the
nowcasting models. The main conclusions of this article include
the following.

1) Visually, all the three fine-tuned models can capture the
precipitation patterns and distribution fairly well. How-
ever, the model trained purely based on hurricane events
tends to underestimate the high-reflectivity regions during
both heavy rain events and hurricane events. Nevertheless,
it provides plausible details about the cyclone structure
during hurricane event. The (nonhurricane) heavy rainfall
and combined models can not only predict the precipita-
tion patterns well but also the precipitation intensity, even
though they tend to smooth and fuse the echoes during
hurricane events.

2) The evaluation results of the three models reveal that
precipitation features learned from heavy convective pre-
cipitation events can be utilized to improve hurricane
nowcasting and the features learned from hurricane events
have no negative impact on nowcasting (nonhurricane)
heavy rain events. Therefore, it is strongly recommended
that data from different precipitation systems be combined
in training the deep learning model, especially when there
is a dearth of data for machine learning model training.

3) The high CSI scores indicate the stable performance of
the nowcasting model trained based on the combined data
for lead times up to 3 h. In addition, the CSI scores are
higher than those reported in the literature (e.g., [6], [7],
and [20]).

4) To quantify the impact of sequence length of past radar
observations for precipitation nowcasting, nine models are
trained with different numbers of past radar observation
(2–10). Considering the balance of computational cost
and nowcasting performance, five consecutive observa-
tions are an optimal choice to yield a reliable model for
nowcasting during high-impact weather events.

In future, a more detailed investigation of the nowcasting
performance in the scenarios of storm initiation, growth, and
decay will be performed.
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